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TALK OUTLINE

1. What is a matrix Lie group ?

2. Matrices revisited.

3. Examples of matrix Lie groups.

4. Matrix Lie algebras.

5. A glimpse at elementary Lie theory.

6. Life beyond elementary Lie theory.
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1. What is a matrix Lie group ?

• Matrix Lie groups are groups of invertible

matrices that have desirable geometric features.

So matrix Lie groups are simultaneously algebraic

and geometric objects.

• Matrix Lie groups naturally arise in

– geometry (classical, algebraic, differential)

– complex analyis

– differential equations

– Fourier analysis

– algebra (group theory, ring theory)

– number theory

– combinatorics.
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• Matrix Lie groups are encountered in many

applications in

– physics (geometric mechanics, quantum con-

trol)

– engineering (motion control, robotics)

– computational chemistry (molecular mo-

tion)

– computer science (computer animation,

computer vision, quantum computation).

• “It turns out that matrix [Lie] groups

pop up in virtually any investigation

of objects with symmetries, such as

molecules in chemistry, particles in physics,

and projective spaces in geometry”. (K.

Tapp, 2005)

Rhodes Univ CCR 3



Maths Seminar 2007

• EXAMPLE 1 : The Euclidean group E (2).

E (2) =
{
F : R

2 → R
2 |F is an isometry

}
.

The vector space R2 is equipped with the

standard Euclidean structure (the “dot

product”)

x • y = x1y1 + x2y2 (x, y ∈ R
2),

hence with the Euclidean distance

dE(x, y) =
√

(y − x) • (y − x) (x, y ∈ R
2).
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Any isometry F of (the Euclidean plane)

R2 has the form

F (x) = Ax + c,

where A ∈ R2×2 such that A>A = I2,

and c ∈ R2 = R2×1.

It turns out that the Euclidean group E (2)

is (isomorphic to) the group of invertible

matrices
{[

1 0
c A

]
|A ∈ R

2×2, A>A = I2, c ∈ R
2

}
.

The underlying set of this group of matri-

ces consists of two components, each of

which is (diffeomorphic to) the smooth

submanifold

R
2 × S

1 ⊂ R
4.
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• EXAMPLE 2 : The rotation group SO (2).

A non-identity isometry of (the Euclidean

plane) R2 is exactly one of the following:

– rotation

– translation

– reflection

– glide reflection.

The rotation group SO (2) consists of

all isometries of R2 which

– fix the origin (i.e., are linear transfor-

mations)

– preserve the orientation (of R2).
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It turns out that the rotation group SO (2)

is (isomorphic to) a group of invertible

matrices

SO (2) =
{
A ∈ R

2×2 |A>A = I2
}

=

{[
cos θ − sin θ
sin θ cos θ

]
| θ ∈ R

}
.

The underlying set of this group of ma-

trices is (diffeomorphic to) the smooth

submanifold

S
1 = {z ∈ C | |z| = 1} ⊂ C = R

2.

Rhodes Univ CCR 7



Maths Seminar 2007

• EXAMPLE 3 : The 3-sphere S3.

S
3 =

{
(x0, x1, x2, x3) |x2

0 + x2
1 + x2

3 + x2
4 = 1

}
⊂ R

4

is a smooth submanifold.

It is also a group. Indeed, the vector

space R × R3, equipped with the prod-

uct

p · q = (p0q0 − p • q, p0q + q0p + p × q) ,

where p = (p0, p), q = (q0, q) ∈ R × R3, is

a (real) division algebra (or skew field),

denoted by H ; its elements are called

quaternions (or Hamilton numbers).

S3 is exactly the group of unit quater-

nions :

S
3 = {x = (x0, x) | |x| = 1} ⊂ R × R

3.

(The modulus of the quaternion x =

(x0, x) ∈ H is |x| =
√

x2
0 + ‖x‖2.)
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It turns out that the 3-sphere S3, as a

group, is isomorphic to a group of invert-

ible matrices

S
3 =

{[
x0 + ix1 −(x2 + ix3)
x2 − ix3 x0 − ix1

]
|x2

0 + ‖x‖2 = 1

}

=

{[
α −β̄
β ᾱ

]
| |α|2 + |β|2 = 1

}
.

This group is the special unitary group

SU (2); it can be viewed as representing

all unitary transformations of the stan-

dard Hermitian space C2, of determinant

equal to 1.

(The standard Hermitian product on C2

is defined by

z � w = z̄1w1 + z̄2w2,

where z = (z1, z2), w = (w1, w2) ∈ C2.)
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• DEFINITION : A matrix Lie group is

any subgroup G of the general linear group

GL (n, k), k ∈ {R, C}

(for some positive integer n) which is

also a smooth submanifold of the matrix

space kn×n.

• REMARK 1 : As their name suggests,

matrix Lie groups are (abstract) Lie groups.

Though not all Lie groups are (isomor-

phic to) matrix Lie groups, most of the

interesting examples are.

• REMARK 2 : A matrix Lie group G is a

closed subset of GL (n, k) ⊂ kn×n. Quite

remarkably - and this is an important re-

sult in the theory of Lie groups - it turns

out that any closed subgroup of GL (n, k)

is a matrix Lie group.
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• A subset S of the Euclidean space Rm

is called a smooth submanifold, of di-

mension `, provided that one (and hence

all) of the following equivalent conditions

are satisfied :

(a) For every x ∈ S, there exist a nbd U

of x and a smooth diffeomorphism φ :

U → Ũ ⊆ Rm such that

φ(S ∩ U) = Ũ ∩ R
`.

(b) For every x ∈ S, there exist a nbd U

of x and a smooth submersion F : U →
Rm−` such that

S ∩ U = F−1(0).
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(c) For every x ∈ S, there exist a nbd U

of x = (x1, . . . , xm), a nbd U ′ of x′ =

(x1, . . . , x`) and smooth functions hi :

U ′ → R, i = 1, . . . , m− ` such that, possi-

bly after a permutation of coordinates,

S ∩ U = graph (H),

where H = (h1, . . . , hm−`) : U ′ → Rm−`.

(d) For every x ∈ S, there exist a nbd U

of x, a nbd V of 0 ∈ R` and a smooth

embedding Φ : V → Rm such that

S ∩ U = im(Φ).

• In (b) we think of a smooth submanifold

as the zero-set of a smooth submersion,

in (c) as a graph of a smooth map, and

in (d) as a parametrized set. All these

are local descriptions.
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• A (real) Lie group is a smooth manifold

which is also a group so that the group

operations are smooth.

• In most of the literature, Lie groups are

defined to be real analytic. In fact, no

generality is lost by this more restrictive

definition. Smooth Lie groups always sup-

port an analytic group structure, and some-

thing even stronger is true.

HILBERT’s 5th PROBLEM was to show that

if G is only assumed to be a topological mani-

fold with continuous group operations, then it is,

in fact, a real analytic Lie group. (This was

finally proved by the combined work of

A. GLEASON, D. MONTGOMERY, L.

ZIPPIN and H. YAMABE in 1952.)
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• A Lie subgroup of a Lie group G is a Lie

group H that is an abstract subgroup and

an immersed submanifold of G.

This means that the inclusion map ι :

H → G is a one-to-one smooth immer-

sion; when ι is a smooth embedding,

then the set H is closed in G.

• FACT : Any closed abstract subgroup H

of a Lie group G has a unique smooth

structure which makes it into a Lie sub-

group of G; in particular, H has the in-

duced topology.

Matrix Lie groups are closed Lie sub-

groups of general linear groups. They

are also known in literature as closed lin-

ear (Lie) groups.
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2. Matrices revisited.

• Matrices (and groups of matrices) have

been introduced by

– Arthur CAYLEY (1821-1895)

– William Rowan HAMILTON (1805-1865)

– James Joseph SYLVESTER (1814-1897)

in the 1850s.
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• About twenty years later, Sophus LIE (1842-

1899) began his research on “continuous groups

of transformations”, which gave rise to the mod-

ern theory of the so-called Lie groups.

• In 1872, Felix KLEIN (1849-1925) delivered

his inaugural address in Erlangen in which he gave

a very general view on what geometry should be

regarded as; this lecture soon became known as

“The Erlanger Programm”. KLEIN

saw geometry as

the study of invariants under a group

of transformations.

LIE’s and KLEIN’s research was to a certain ex-

tent inspired by their deep interest in the theory

of groups and in various aspects of the notion of

symmetry .
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• The ground field is k = R or k = C. Consider

the matrix space kn×n of all n×n ma-

trices over k.

The set kn×n has a certain amount of

structure :

– kn×n is a real vector space.

– kn×n is a normed algebra.

– kn×n is a Lie algebra.
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(a) kn×n is a real vector space.

Firstly, the correspondence

A =
[
aij

]
7→ a = (a11, · · · , an1, a12, · · · , ann)

defines an isomorphism between (vector spaces

over k ) kn×n and kn2
.

Secondly, since any vector space over C can

be viewed as a vector space over R (of twice

the dimension), we have that Cn2
, as a real

vector space, is isomorphic to R2n2
:

C
n2

= R
n2 ⊕ i R

n2
= R

2n2
.

So we have

k
n×n = k

n2
=





Rn2
if k = R

R2n2
if k = C.
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The matrix space kn×n inherits a natural

(metric) topology, induced by the Euclidean

distance on kn2
.

For a matrix A =
[
aij

]
∈ kn×n, the (induced)

norm

‖A‖F = ‖a‖2 =

√√√√√
n∑

i,j=1

|aij|2

=
√

tr (A∗A)

is called the Frobenius norm.
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(b) kn×n is a normed algebra.

To any matrix A ∈ kn×n there corresponds

a linear endomorphism x 7→ Ax of (the vec-

tor space) kn; conversely, any such endomor-

phism is defined by an n × n matrix over k.

The correspondence

A =
[
aij

]
∈ k

n×n 7→

x 7→ Ax = (

n∑

j=1

aijxj)




is an isomorphism between (associative alge-

bras over k) kn×n and End (kn).

(We identify n × n matrices with linear en-

domorphisms of kn without change of nota-

tion.)
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The associative algebra End (kn) has a nat-

ural metric topology, generated by the so-

called operator norm :

‖A‖ = max
‖x‖2=1

‖Ax‖2

= max
x6=0

‖Ax‖2
‖x‖2

,

where ‖ · ‖2 is the 2-norm (or the Euclidean

norm) on kn.

The operator norm ‖ · ‖ and the Frobenius

norm ‖·‖F are both sub-multiplicative norms

(on kn×n), but they are not equal (for instance,

‖In‖ = 1 whereas ‖In‖F =
√

n).

Being defined on the same finite-dimensional

vector space, these (matrix) norms are equiv-

alent (i.e., they generate the same metric

topology).
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(c) kn×n is a Lie algebra.

The matrix commutator

[A, B] = AB − BA (A, B ∈ k
n×n)

defines on the matrix space kn×n a Lie alge-

bra structure.

When viewed as a Lie algebra, kn×n is usually

denoted by gl (n, k).

Any element (matrix) A ∈ kn×n defines two

different vector fields on kn×n = kn2
:

X 7→ AX and X 7→ XA.
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• DEFINITION : A Lie algebra over k is

a vector space A over k equipped with

a bilinear multiplication

[·, ·] : A × A → A,

called the Lie bracket, which satisfy the

following conditions :

(a) skew-symmetry :

[x, y] = −[y, x] (x, y ∈ A).

(b) the JACOBI identity :

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (x, y, z ∈ A).

A Lie algebra is an algebraic structure whose

main use is in studying geometric objects

such as Lie groups and homogeneous spaces.

The term “Lie algebra” was introduced by

Hermann WEYL (1885-1955) in the 1930s.
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The matrix space kn×n
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• The map

ρn : C
n×n → R

2n×2n, Z = X + iY 7→
[
X −Y
Y X

]

has the following properties :

(a) For all A ∈ Cn×n, the diagram

Cn −→ R2n

A

y
yρn(A)

Cn −→ R2n

commutes.

(b) For all λ ∈ R and A, B ∈ Cn×n,

– ρn(λA) = λρn(A).

– ρn(A + B) = ρn(A) + ρn(B).

– ρn(AB) = ρn(A)ρn(B).

ρn is an injective homomorphism of alge-

bras (over R).

We identify Cn×n with ρn(Cn×n) ⊂ R2n×2n.
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• Consider the general linear group

GL (n, k) =
{
g ∈ k

n×n | det g 6= 0
}

.

GL (n, k) is an open subset of the ma-

trix space kn×n and so, in particular, is a

smooth manifold. (In fact, GL (n, k) is a

Lie group.)

We identify the complex general linear

group GL (n, C) with the subgroup

ρn(GL (n, C)) =

{[
X −Y
Y X

]
| det(X + iY ) 6= 0

}

= {g ∈ GL (2n, R) | g J = J g}

of the general linear group GL (2n, R).

(Here J = Jn,n =

[
0 In

−In 0

]
.)

Rhodes Univ CCR 26



Maths Seminar 2007

• For any A ∈ kn×n, the matrix exponential

eA = In + A +
1

2!
A2 +

1

3!
A3 + · · ·

is defined; it turns out that eA is nonsin-

gular.

The exponential map

exp : k
n×n → GL (n, k), A 7→ eA

has the following properties :

(a) exp is a smooth map (in fact, it is

locally a diffeomorphism at 0).

(b) eXeY = eX+Y if X and Y commute.

(c) t 7→ etX is a smooth curve in GL (n, k)

that is 1 = In at t = 0.

(d) d
dt

(
etX

)
= XetX.

(e) det eX = etr (X).
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The matrix Lie group G ≤ GL (n, k)
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3. Examples of matrix Lie groups.

(Again, the ground field is k = R or k = C.)

• The additive group k :

k ∼=
{[

1 α
0 1

]
|α ∈ k

}
≤ GL (2, k).

• The multiplicative group k× :

k
× = GL (1, k).

• The circle (or 1-dimensional torus) S1 :

S
1 = {z ∈ C | |z| = 1}

=

{[
α −β
β α

]
|α2 + β2 = 1

}
≤ GL (2, R).

(In fact, S1 ∼= SO (2).)
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FACT : The direct product of two matrix

Lie groups is a matrix Lie group.

• The vector Lie group kn (the direct prod-

uct of n copies of the additive group k).

• The n-dimensional torus Tn (the direct

product of n copies of the circle).

FACT : Any connected Abelian Lie group

is isomorphic to

T
k × R

`

for some integers k, ` ≥ 0.

(Note that

S
1 × R ∼= C

× = GL (1, C).)
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FACT : Any compact Abelian Lie group

is (up to isomorphism) of the form

T
k × F

for some integer k ≥ 0, where F is a

finite Abelian group.

FACT : The ONLY connected Lie groups

(up to isomorphism) of dimension 1 are

R and T1 = S1.

FACT : The ONLY connected Lie groups

(up to isomorphism) of dimension 2 are

– Tk × R2−k, k = 0,1,2

– GA+ (1, R) =

{[
1 0
β α

]
|α, β ∈ R, α > 0

}
.
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• The special linear group SL (n, k) :

SL (n, k) = {g ∈ GL (n, k) | det g = 1} .

• The orthogonal group O (n) :

O (n) =
{
g ∈ GL (n, R) | g>g = I

}
.

• The special orthogonal group SO (n) :

SO (n) = SL (n, R) ∩ O (n).

• The unitary group U (n) :

U (n) = {g ∈ GL (n, C) | g∗g = I} .

• The special unitary group SU (n) :

SU (n) = SL (n, C) ∩ U (n).
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• The complex orthogonal group O (n, C) :

O (n, C) =
{
g ∈ GL (n, C) | g>g = I

}
.

• The complex special orthogonal group

SO (n, C) :

SO (n, C) = SL (n, C) ∩ O (n, C).

• The pseudo-orthogonal group O (p, q) :

O (p, q) =
{
g ∈ GL (n, R) | g>Ip,q g = Ip,q

}
,

where n = p + q and Ip,q =

[
Ip 0
0 −Iq

]
.

• The special pseudo-orthogonal group

SO (p, q) :

SO (p, q) = SL (n, R) ∩ O (p, q).
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• The symplectic group Sp (n, k) :

Sp (n, k) =
{
g ∈ GL (2n, k) | g>Jn,n g = Jn,n

}
,

where Jn,n =

[
0 In

−In 0

]
.

(For the members of Sp (n, k) - the sym-

plectic matrices over k, the determinant

is automatically 1.)

• The compact symplectic group Sp (n) :

Sp (n) = Sp (n, C) ∩ U (2n).

(The group Sp (n) is also known as the

unitary group over the quaternions:

Sp (n) ∼= {g ∈ GL (n, H) | g∗g = I} ;

again, for the elements of Sp (n), the de-

terminant is automatically 1.)
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• The pseudo-unitary group U (p, q) :

U (p, q) = {g ∈ GL (n, C) | g∗Ip,q g = Ip,q} ,

where n = p + q and Ip,q =

[
Ip 0
0 −Iq

]
.

• The special pseudo-unitary group

SU (p, q) :

SU (p, q) = SL (n, C) ∩ U (p, q).

• The pseudo-symplectic group Sp (p, q) :

Sp (p, q) = Sp (n, C) ∩ U (2p,2q),

where n = p + q.

(The group Sp (p, q) is also known as the

pseudo-unitary group over the quaternions:

Sp (p, q) ∼= {g ∈ GL (n, H) | g∗Ip,q g = Ip,q} .)
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• The group O∗ (2n) :

O∗ (2n) =
{
g ∈ U (n, n) | g>In,nJn,ng = In,nJn,n

}
,

where In,nJn,n =

[
0 In

In 0

]
.

• The group SO∗ (2n) :

SO∗ (2n) = SL (2n, C) ∩ O∗ (2n).

• The group SU∗ (2n) :

SU∗ (2n) =

{[
z1 −z̄2

z2 z̄1

]
∈ SL (2n, C) | z1, z2 ∈ C

n×n

}
.

(The group SU∗ (2n) is the special lin-

ear group over quaternions, in its com-

plex guise :

SU∗ (2n) ∼= SL (n, H).)

Rhodes Univ CCR 36



Maths Seminar 2007

• The triangular group T (n, k) :

T (n, k) =
{
g ∈ GL (n, k) | gij = 0 for i > j

}
.

(The members of T (n, k) are invertible

upper-triangular matrices over k. This is

an example of a solvable Lie group.)

• The unipotent group Tu (n, k) :

Tu (n, k) =
{
g ∈ GL (n, k) | gij = δij for i ≥ j

}
,

where δij denotes the Kronecker symbol.

(The members of Tu (n, k) are invertible

upper-triangular matrices over k with 1’s

on the main diagonal. This is an example

of a nilpotent Lie group.)

Note that

– Tu (2, k) ∼= k;

– Tu (3, R) = Heis (the Heisenberg group).
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• The Euclidean group E (n) :

E (n) =

{[
1 0
c A

]
|A ∈ O (n), c ∈ R

n

}
.

• The special Euclidean group SE (n) :

SE (n) =

{[
1 0
c A

]
|A ∈ SO (n), c ∈ R

n

}
.

• The symmetric group Sn :

Sn = {σ | σ is a permutation on n elements} .

– Any finite group is a matrix Lie group

(of dimension 0).

FACT : Any compact Lie group is (iso-

morphic to) a matrix Lie group. (More

precisely, any compact Lie group is isomorphic to

a closed subgroup of the orthogonal group O (m)

or the unitary group U (n) for some positive in-

tegers m and n, respectively).
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• The following matrix Lie groups

SL (n, R), SL (n, C), SU∗ (2n), SO (p, q),

SO (n, C), Sp (n, R), Sp (n, C), SU (p, q),

Sp (p, q), and SO∗ (2n)

are known as the (real) classical groups.

– The compact classical groups are

SO (n), Sp (n), and SU (n).

– The classical groups are ALL connected,

except for SO (p, q) with p, q > 0, which

has two connected components.

(Note that

SO0 (1, n) = Lor (n), n ≥ 2

is the Lorentz group of order n.)
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FACT : All the classical groups, ex-

cept for the special linear groups

(i.e., SL (n, R), SL (n, C), SL (n, H) ∼= SU∗ (2n)),

can be viewed as automorphism groups

of forms; these are groups of linear trans-

formations (over R, C or H) that pre-

serve a non-degenerate form (which may

be symmetric, skew-symmetric, Hermi-

tian or skew-Hermitian) and of determi-

nant equal to 1.

For example,

– the special orthogonal group SO (n)

may be realized as the group of linear

transformations (of determinant equal

to 1 ) on Rn preserving the symmetric

bilinear form (the standard Euclidean

structure)

φ(x, y) = x>y = x1y1 + · · · + xnyn.

(These transformations are exactly the

rotations about the origin.)

Rhodes Univ CCR 40



Maths Seminar 2007

Automorphism groups of forms

Group Field Form

SO (p, q) R symmetric

SO (n, C) C symmetric

Sp (n, R) R skew-symmetric

Sp (n, C) C skew-symmetric

SU (p, q) C Hermitian

Sp (p, q) H Hermitian

SO∗ (2n) H skew-Hermitian

If φ is a non-degenerate (bilinear or sesquiliniar)

form on the finite dimensional vector space

E (over R, C or H), then its associated

automorphism group is

Aut (φ) = {a ∈ GL (E) |φ(ax, ay) = φ(x, y)} .

(Note that

H
n×1 = H

n = C
n ⊕ jCn

is regarded as a right vector space over

H.)
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4. Matrix Lie algebras.

• DEFINITION : A matrix Lie algebra is

any Lie subalgebra of (the matrix space)

k
n×n = gl (n, k), k ∈ {R, C}

(for some positive integer n).

• REMARK : Clearly, any matrix Lie alge-

bra is an abstract Lie algebra. Quite re-

markably, the converse is also true. This

is a hard and deep result (due to the Rus-

sian mathematician Igor ADO) :

Any finite-dimensional Lie algebra over

R has a one-to-one representation on

some finite-dimensional complex vec-

tor space

(i.e., it is isomorphic to a matrix Lie algebra).
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• Let G be a matrix Lie group :

G ≤ GL (n, k) ⊂ k
n×n.

In particular, G is a smooth submanifold

of the Euclidean space kn2
.

The tangent space to G at the identity

1 = In ∈ G

T1G = {α̇(0) |α : (−ε, ε) → G, α(0) = 1}

is a matrix Lie algebra, called the Lie al-

gebra of G.

• The Lie algebra of G, denoted by g, is

isomorphic to each of the following (ma-

trix) Lie algebras :

– L(G) =
{
X ∈ kn×n | etX ∈ G, ∀t ∈ R

}
.

– XL (G) = {XA |XA : g 7→ gA, A ∈ T1G}.

– {σ |σ : R → G is 1-parameter subgroup of G}.
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• The restriction (to g ) of the exponential

map, expG = exp |g, carries (the Lie alge-

bra) g into G. (In general, this map is neither

one-to-one nor onto.) We list some of the

basic properties of the exponential map

expG : g → G, A 7→ eA.

– Any 1-parameter subgroup of G (i.e., a

continuous group homomorphism σ : R → G)

has the form

t 7→ etA, A ∈ g.

– The flow of a left-invariant vector field

XA : g 7→ gA is given by

ϕt(g) = getA, A ∈ g.

– The derivative of the exponential map

at 0 is given by D expG(0) = idg, and

hence (by the Inverse Function Theorem)

expG is locally a diffeomeorphism at

0.
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– For A ∈ g,

exp (A) = lim
k→∞

(
In +

1

k
A

)k
.

– For A, B ∈ g,

exp (A + B) = lim
k→∞

[
exp

(
1

k
A

)
exp

(
1

k
B

)]k

.

(This formula relates addition in g to multi-

plication in G.)

– For A, B ∈ g,

exp ([A, B]) =

lim
k→∞

[
exp

(
1

k
A

)
exp

(
1

k
B

)
exp

(
−1

k
A

)
exp

(
−1

k
B

)]k2

.

(This formula relates the Lie bracket/commutator

in g to the group commutator in G.)
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EXAMPLES of (MATRIX) LIE ALGEBRAS

• The Lie algebra of scalar matrices

s (n, k) = {λIn |λ ∈ k} .

• The Abelian Lie algebra kn (the vector

space kn equipped with the trivial Lie

multiplication).

• FACT : Up to isomorphism, there is ONLY

ONE real Lie algebra of dimension 1, namely

(the Abelian Lie algebra) g = R.

• FACT : There are ONLY TWO distinct

real Lie algebras of dimension 2 : the

Abelian Lie algebra R2 and r2.

(r2 is isomorphic to the Lie algebra of

the matrix Lie group R2 = GA+ (1, R) :

r2
∼=

{[
0 0
β α

]
|α, β ∈ R

}
.)
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• The Lie algebra of the special linear group:

sl (n, k) = {X ∈ gl (n, k) | tr X = 0} .

• The orthogonal Lie algebra so (n) :

so (n) =
{
X ∈ gl (n, R) |X> + X = 0

}
.

• The unitary Lie algebra u (n) :

u (n) = {X ∈ gl (n, C) |X∗ + X = 0} .

• The special unitary Lie algebra su (n) :

su (n) = {X ∈ gl (n, C) |X∗ + X = 0, tr X = 0} .
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• The complex orthogonal Lie algebra so (n, C) :

so (n, C) =
{
X ∈ gl (n, C) |X> + X = 0

}
.

• The pseudo-orthogonal Lie algebra so (p, q):

so (p, q) =
{
X ∈ gl (n, R) |X>Ip,q + Ip,qX = 0

}
,

where n = p + q and Ip,q =

[
Ip 0
0 −Iq

]
.

• The symplectic Lie algebra sp (n, k) :

sp (n, k) =
{
X ∈ gl (2n, k) |X>Jn,n + Jn,nX = 0

}
,

where Jn,n =

[
0 In

−In 0

]
.
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• The pseudo-unitary Lie algebra su (p, q):

su (p, q) = {X ∈ gl (n, C) |X∗Ip,q + Ip,qX = 0} ,

where n = p + q and Ip,q =

[
Ip 0
0 −Iq

]
.

• The pseudo-symplectic Lie algebra sp (p, q):

sp (p, q) = {X ∈ gl (n, H) |X∗Ip,q + Ip,qX = 0} ,

where n = p + q and Ip,q =

[
Ip 0
0 −Iq

]
.

In particular, the Lie algebra (of the com-

pact symplectic group) sp (n) is isomor-

phic to
{[

z1 −z̄2
z2 z̄1

]
| z∗1 + z1 = 0, z>2 = z2

}
.

(In fact,

sp (n) ∼= sp (n, C) ∩ u (2n).)
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• The Lie algebra of the group SO∗ (2n) :

so∗ (2n) =
{
X ∈ su (n, n) |X>In,nJn,n + In,nJn,nX = 0

}
,

where In,nJn,n =

[
0 In

In 0

]
.

• The Lie algebra of the group SU∗ (2n) :

su∗ (2n) = {X ∈ gl (n, H) |Re(tr X) = 0}

=

{
X =

[
z1 −z̄2

z2 z̄1

]
| z1, z2 ∈ gl (n, C), tr X = 0

}
.
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• The Lie algebra of the triangular group T (n, k):

t (n, k) =
{
X ∈ gl (n, k) |Xij = 0 for i > j

}
.

(The elements of t (n, k) are upper-triangular

matrices over k. This is an example of a

solvable Lie algebra.)

• The Lie algebra of the unipotent group Tu (n, k):

tu (n, k) =
{
X ∈ gl (n, k) |Xij = δij for i ≥ j

}
.

(The elements of tu (n, k) are strictly upper-

triangular matrices over k. This is an

example of a nilpotent Lie algebra.)

In particular, the Lie algebra (of strictly

upper-triangular 3 × 3 matrices)

heis =







0 α β
0 0 γ
0 0 0


 |α, β, γ ∈ R





is the Heisenberg Lie algebra.
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• The Euclidean Lie algebra se (n) :

se (n) =

{[
0 0
c A

]
|A ∈ so (n), c ∈ R

n

}
.

In particular, the Lie algebra

se (2) =







0 0 0
x 0 −θ
y θ 0


 |x, y, θ ∈ R





is isomorphic with the Lie algebra of the

group of translations and rotations of (the

Euclidean plane) R2.

• The Lie algebra






0 0 0
x t 0
y 0 t


 |x, y, t ∈ R





is isomorphic with the Lie algebra of the

group of translations and dilations of (the

Euclidean plane) R2.
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5. A glimpse at elementary Lie theory.

• LIE THEORY is a fundamental part of

mathematics. It is a subject which per-

meates many branches of modern math-

ematics and mathematical physics.

• If we are willing to ignore a number of

details, the elementary Lie theory has

– TWO ingredients

– THREE correspondences.

(For each of the three correspondences, there is

a direct part and an inverse part.)
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• The two ingredients are Lie groups and

Lie algebras.

• The Lie algebra of the Lie group G is the

tangent space TeG to G at the identity

e ∈ G. It is isomorphic to (and hence

identified with) the Lie algebra XL (G) of

left-invariant vector fields on G.

(X ∈ XL (G) ⇐⇒ (Lg)∗ X = X, g ∈ G.)

• FACT : Any matrix Lie group is a Lie

group

• FACT : Not every Lie group is (isomor-

phic to) a matrix Lie group, but a Lie

group is always locally isomorphic to

a matrix Lie group.
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• FIRST CORRESPONDENCE (direct part):

To each Lie group there corresponds

a Lie algebra.

The essential tool in studying the rela-

tionship between a Lie group and its Lie

algebra is the exponential map.

For X ∈ g = XL (G), let γX : R → G de-

note the integral curve of (the complete

vector field) X with initial condition e.

Then the map

expG : g → G, X 7→ γX(1)

is smooth and its tangent map (differen-

tial) at 0

(expG)∗,0 : T0 g = g → TeG = g

is the identity.
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• FIRST CORRESPONDENCE (the inverse

part) :

Two connected Lie groups with iso-

morphic Lie algebras are not neces-

sarily isomorphic, but they must have

covering groups that are isomorphic.

If the connected Lie groups G1, G2 with

g1
∼= g2 are simply connected (i.e., their

fundamental groups are trivial), then G1
∼= G2.

FACT : If G̃ is the universal covering

group of the (connected) Lie group G,

then any Lie group locally isomorphic to

G is (isomorphic to) a quotient of G̃ by a

discrete subgroup of G which lies in the

centre of G̃.

(NB : The universal cover of a matrix Lie group

may not be a matrix Lie group.)
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• SECOND CORRESPONDENCE (direct

part) :

To each subgroup of a certain kind

corresponds a Lie subalgebra.

If H is a Lie subgroup of the Lie group

G, then the exponential map of H is the

restriction to h of the exponential map

of G, and

h = {X ∈ g | exp (tX) ∈ H for all t ∈ R} .
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• SECOND CORRESPONDENCE (the in-

verse part) :

The correspondence of analytic sub-

groups to subalgebras of Lie algebras

is one-to-one and onto.

Given a Lie group G with Lie algebra g,

if h is any Lie subalgebra of g, then there

is a unique connected Lie subgroup of G

whose Lie algebra is h.
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• THIRD CORRESPONDENCE (direct part):

To each smooth homomorphism of

Lie groups there corresponds a ho-

momorphism of Lie algebras.

If φ : G → H is a smooth homomorphism

of Lie groups, then the (tangent) map

dφ = φ∗ : g → h

satisfies

expH (dφ(X)) = φ (expG(X))

for all X ∈ g. In other words, the diagram

g
dφ−−→ h

expG

y
yexpH

G
φ−→ H

commutes. Moreover, for all X,Y ∈ h,

dφ ([X, Y ]G) = [dφ(X), dφ(Y )]H .
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• THIRD CORRESPONDENCE (the inverse

part) :

The correspondence of homomorphisms

of Lie groups to homomorphisms of

Lie algebras is one-to-one if the group

is connected.

If φ1 and φ2 are smooth homomorphisms

between Lie groups G and H such that

dφ1 = dφ2, then φ1 = φ2 on G0 (the

connected component of the identity).

Moreover, if G an H are connected Lie

groups with G simply connected, for any

Lie algebra homomorphism Φ : g → h,

there is a unique smooth homomorphism

of Lie groups φ : G → H such that dφ =

Φ.
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• REMARK : The Lie functor taking a

(real, finite-dimensional) Lie group G to

its associated Lie algebra g and a smooth

homomorphism φ of Lie grups to its as-

sociated Lie map dφ is an equivalence of

categories between the category of con-

nected and simply connected Lie groups

and the category of Lie algebras.

The study of Lie groups can be reduced

to questions in (the vastly simpler realm

of) linear algebra.
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6. Life beyond elementary Lie theory.

The ground field is k = R or k = C.

• There is a rough classification of Lie al-

gebras over k, which reflects the degree

to which a given Lie algebra fails to be

Abelian.

A Lie algebra g is said to be Abelian if

all Lie brackets are zero.

• FACT : For a connected Lie group G

with Lie algebra g, G is Abelian if and

only if g is Abelian.
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• A Lie subalgebra h of a Lie algebra g is

called an ideal if it satisfies the condition

[X, Y ] ∈ h for all X ∈ h, Y ∈ g.

(Just as connected subgroups of Lie groups cor-

respond to subalgebras of its Lie algebra, the no-

tion of ideal in a Lie algebra corresponds to the

notion of normal subgroup.)

• A non-Abelian Lie algebra g is called sim-

ple if it has no nontrivial ideals.

A simple Lie group is a connected Lie

group with a simple Lie algebra.

• FACT : A connected Lie group G is sim-

ple if and only if it has no proper normal

Lie subgroups.
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• For a Lie algebra g we define

– the lower central series (of ideals)

g = g0 ⊇ g1 ⊇ g2 ⊇ · · · ,

where gj+1 =
[
g, gj

]
, j = 0,1, . . .

– commutator series (of ideals)

g = g0 ⊇ g1 ⊇ g2 ⊇ · · · ,

where gj+1 =
[
gj, gj

]
, j = 0,1, . . .

• A Lie algebra g is called

– nilpotent if gj = 0 for some j.

– solvable if gj = 0 for some j.

– semisimple if it has no nontrivial solv-

able ideals.
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A connected Lie group is nilpotent, solv-

able or semisimple if its Lie algebra is

nilpotent, solvable or semisimple, respec-

tively.

• FACT : Every Abelian Lie group G (re-

spectively Abelian Lie algebra g ) is nilpo-

tent.

• FACT : Every nilpotent Lie group G (re-

spectively nilpotent Lie algebra g ) is solv-

able.

• FACT : Every simple Lie group G (re-

spectively simple Lie algebra g ) is semisim-

ple.
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• Since the sum of two solvable ideals of a

Lie algebra is a solvable ideal, every Lie

algebra g has a maximal solvable ideal,

called the radical of g and denoted by

rad (g).

• FACT : For any Lie algebra g, the quo-

tient g/rad (g) is semisimple.

Any Lie algebra g thus fits into an exact

sequence

0 −→ rad (g) −→ g −→ g/rad (g) −→ 0,

where the first Lie algebra is solvable and

the last is semisimple.
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• LEVI DECOMPOSITION : Any (finite-

dimensional real) Lie algebra g is the

semidirect sum of its (solvable) radical

rad (g) and a semisimple subalgebra l:

g = rad (g) h l.

(Eugenio LEVI (1883-1917).)

To study Lie groups/algebras we need

to understand individually the theories of

solvable and semisimple Lie algebras.

Of these, the former is relatively easy,

whereas the latter is extraordinarily rich.

• FACT : A Lie algebra g is semisimple if

and only if

g = g1 ⊕ g2 ⊕ · · · ⊕ gm

with gj ideals that are each simple Lie

algebras.
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• In his 1894 thesis, Elie CARTAN (1869-

1951), correcting and improving earlier work

of Wilhelm KILLING (1847-1923), classi-

fied the simple Lie algebras over C.

Any simple Lie algebra over C is iso-

morphic to exactly one of the follow-

ing :

(a) a Lie algebra of classical type

(A`) : a` = sl (` + 1, C), ` ≥ 1.

(B`) : b` = so (2` + 1, C), ` ≥ 2.

(C`) : c` = sp (`, C), ` ≥ 3.

(D`) : d` = so (2`, C), ` ≥ 4.

(b) an exceptional Lie algebra

e6, e7, e8, f4, g2.
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CLASSIFICATION of SIMPLE REAL

LIE ALGEBRAS

Up to isomorphism every simple real

Lie algebra is in the following list, and

everything in the list is a simple real

Lie algebra :

(a) the Lie algebra gR, where g is a com-

plex simple Lie algebra :

a` (` ≥ 1), b` (` ≥ 2), c` (` ≥ 3), d` (` ≥ 4)

e6, e7, e8, f4, g2.

(b) the compact real form of any g as in (a) :

su (` + 1), ` ≥ 1.

so (2` + 1), ` ≥ 2.

sp (`), ` ≥ 3.

so (2`), ` ≥ 4.

Rhodes Univ CCR 69



Maths Seminar 2007

(c) the classical matrix Lie algebras

su (p, q), p ≥ q > 0, p + q ≥ 2.

so (p, q), p > q > 0, p+q odd, p+q ≥
5 or p ≥ q > 0, p + q even, p + q ≥ 8.

sp (p, q), p ≥ q > 0, p + q ≥ 3.

sp (n), n ≥ 3.

so∗ (2n), n ≥ 4.

sl (n, R), n ≥ 3.

sl (n, H) = su∗ (2n), n ≥ 2.

(d) the 12 exceptional noncomplex non-

compact simple Lie algebras ...

NB : The ONLY isomorphism among Lie algebras

in the above list is

so∗ (8) ∼= so (6,2).
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The COMPACT Simple Lie Groups

The collection

A` (` ≥ 1), B` (` ≥ 2), C` (` ≥ 3), D` (` ≥ 4)

E2, E7, E8, F4 and G2.

is precisely the set, without repetion,

of all the local isomorphism classes of

the compact simple Lie groups.

(NB : A` denotes the local isomophism class of

SU (` + 1), etc.)

Some redundancies occur in the lower val-

ues of the rank :

A1 = B1 = C1

D2 = A1 × A1

B2 = C2

A3 = D3

D1 is Abelian.

(The rank of the Lie group G is the di-

mension of the maximal torus in G.)
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• The simple Lie groups, and groups closely

related to them, include

– (many of) the classical groups of ge-

ometry. (These groups lie behind projective

geometry and other geometries derived from

it; they can be uniformly described as groups

of isometries.)

– some exceptional groups. (These groups

are related to the isometries of projective planes

over octonion algebras; they have dimension

78, 133, 248, 52 and 14, respectively.)

• FACT : The exceptional simple Lie group

G2 (of dimension 14) is (isomorphic to)

the automorphism group of the (Cayley

algebra) of octonions.

Rhodes Univ CCR 72



Maths Seminar 2007

The REAL Classical Groups

Real Complex Quaternionic

matrices matrices matrices

SL (n, R) SL (n, C) SL (n, H)

SO (p, q) SO (n, C) SO∗ (2n)

Sp (n, R) Sp (n, C) Sp (p, q)
SU (p, q) SU∗ (2n)

Simple Lie Groups of Small Dimension

3 SU (2) = Sp (1) SO (3)

3 SL (2, R) = Sp (1, R) SO0 (1,2)

6 SL (2, C) = Sp (1, C) SO0 (1,3) SO (3, C)

8 SL (3, R)

8 SU (3)

8 SU (1,2)

10 Sp (2) SO (5)

10 Sp (1,1) SO0 (1,4)

10 Sp (2, R) SO0 (2,3)

NB : The groups on a given line all have the same Lie

algebra.
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• The three introductory examples of ma-

trix Lie groups are as follows :

– The connected component of the iden-

tity of E (2) (i.e., the special Euclidean

group SE (2) ) is solvable.

– The rotation group SO (2) is Abelian.

– The special unitary group SU (2) is

simple.
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