Mathematics benchmark assessment memorandum

1.
$$10 \times 2 + (6-4) \div 2 = ?$$

$$20 + \frac{2}{2} = 21$$

2.
$$\frac{3x}{4} + \frac{4x}{3} = ?$$

$$\frac{3 \times 3x}{12} + \frac{4 \times 4x}{12} = \frac{9x + 16x}{12} = \frac{25x}{12}$$

3. If
$$\ln\left(\frac{y}{1-y}\right) = a + bx$$
, solve for y.

$$\frac{y}{1-y} = e^{a+bx}$$

$$y = e^{a+bx} - ye^{a+bx}$$

$$y + ye^{a+bx} = e^{a+bx}$$

$$y(1+e^{a+bx})=e^{a+bx}$$

$$y = \frac{e^{a+bx}}{1 + e^{a+bx}}$$

Divide by e^{a+bx}

$$y = \frac{1}{1 + e^{-(a+bx)}}$$

4. Simplify
$$\ln\left(\frac{A}{B}\right)$$
.

$$\ln\left(\frac{A}{B}\right) = \ln A - \ln B$$

5. If
$$y = ae^{-bx}$$
, $\ln(y) = ?$

$$\ln y = \ln a - bx$$

6. What is the maximum of the curve $y = ax - bx^2$?

$$\frac{d}{dx} \left\{ ax - bx^2 \right\} = 0$$

$$a - 2bx = 0$$

$$a = 2bx$$

$$x = \frac{a}{2b}$$

$$y = a \left(\frac{a}{2b}\right) - b \left(\frac{a}{2b}\right)^2$$
$$y = \frac{a^2}{2b} - \frac{a^2}{4b} = \frac{a^2}{b} \left(\frac{1}{2} - \frac{1}{4}\right)$$
$$y = \frac{a^2}{4b}$$

7. Solve
$$\frac{d}{dx} \{ x^2 + 2y + 3xy \}$$
.

$$\frac{d}{dx}\left\{x^2 + 2y + 3xy\right\} = 2x + 3y$$

8. Solve
$$\frac{d}{dx} \left\{ \frac{1}{\sqrt{x}} \right\}$$
.

Use the chain rule here.

Let
$$u = \sqrt{x} = x^{1/2}$$

$$\frac{d}{dx} \left\{ \frac{1}{\sqrt{x}} \right\} = \frac{dy}{du} \frac{du}{dx}$$

$$\frac{d}{du}\left\{u^{-1}\right\} \times \frac{d}{dx}\left\{x^{1/2}\right\}$$

$$-u^{-2} \times \frac{1}{2} x^{-1/2}$$

$$-(\sqrt{x})^{-2} \times \frac{1}{2} x^{-1/2}$$

$$-\frac{1}{2x\sqrt{x}} = -\frac{1}{2x^{3/2}}$$

9. Solve $\frac{dy}{dx} \{ xe^{-2x} \}$.

Use product rule and chain rule

$$= x \frac{dy}{dx} \{e^{-2x}\} + e^{-2x} \frac{dy}{dx} \{x\}$$

$$= xe^{-2x} \times -2 + e^{-2x} \times 1$$

$$= -2xe^{-2x} + e^{-2x}$$

$$= e^{-2x} (1 - 2x)$$

10. Solve $\frac{d}{dx}\{\ln x\}$.

$$\frac{d}{dx}\{\ln x\} = \frac{1}{x}$$

11. Solve $\frac{d}{dx} \{e^{-x}\}$.

$$\frac{d}{dx} \{e^{-x}\} = e^{-x} \frac{d}{dx} \{-x\} = -e^{-x}$$

12. Solve $\int mdx$

$$\int mdx = mx + C$$

13. What is the geometric mean of $\{y_1, y_2,...y_n\}$?

$$\sqrt[n]{\prod_{i=1}^n y_i}$$

14. What is the standard error of the mean of $\{y_1, y_2,...y_n\}$?

$$SE = s_{\bar{y}} = \frac{s^2}{n} = \frac{1}{n} \sqrt{\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n}}$$

15. Explain what a null hypothesis is to your grandmother.

The null hypothesis is basically the idea/guess that there is no difference between measured phenomena and that any difference between them can be caused by chance alone.