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Lecture 7 – Linear relationships  

 

Introduction 

 
Often in biology we are faced with data that are linearly related to one another, where 
the observed value is dependent on another.  Therefore if we know the relationship 
between the values a can predict one value if we know the other. 
 
For example, you go fishing, catch a fish and then measure it.  When you get home, 
you are interested in its weight to brag to your mates.  It is known that fish growth in 
weight as a function of its length, so given the length and some length-weight 
relationship you can estimate its weight. 
 
The simplest way to investigate linearly correlated values would be with the equation 

xy  , where y is simply linearly related to an x by some sort of parameter   - a 

slope parameter.  A slightly more complicated model is xy 10   where 0 and 

1  is the intercept and slope, respectively. In reality, the first model simply a subset 
of the second model as it merely has an intercept of zero.  
 
In the real world, these slope and intercept parameters are not known and to further 
complicate issues there tends to be some form of sampling error in collecting the data.  
We therefore require a statistical method to estimate these parameters such that we 
may make additional inferences about our confidence in their values or draw 
inference about any prediction we wish to make. 
 
This method is known as regression, and in our specific case linear regression as there 
are non-linear1 forms around.  The term “regression” was coined when the heights of 
children were plotted against the difference in the heights of their parents where it was 
shown that children height “regressed” to the average of their parents heights.   
 
Regression is therefore a method to find the average value of a y-value given some 
known x-value.  
 
 

Method of least squares 

 
The simplest method is to find the best parameter estimates that minimise the 
variance, or simply the sum-of-squared differences as in ANOVA, between the 
observed data and the fitted line.  

                                                 
1 A linear model can be defined as having all exponents for any dependent value equal to one. For 

example,  22110 xxy   is linear as is 1

10
 xy   (because 

110 lnlnln xy   through a logarithmic transformation).  Unfortunately, 
  2110

  xey is non-linear.  This model is the Von Bertalanffy growth model used 

commonly to model fish length y as a function of age x. 
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Under the assumption that there is no error in the independent data (the x’s) then the 
sum-of-squared error is calculated from the error-prone dependent data (y’s) as 

 



n

i
ii yySSE

1

2ˆ   where ii xy 10
ˆˆˆ   . 

 
Note that the “hat” symbol means “estimate”. 
 
 

To solve for the optimal 0̂ and 1̂  that provides the least squared error we use 

differential calculus.  The solution is found by taking the first derivative of SSE with 

respect to each parameter of interest, that is 0̂ and 1̂ , setting each resultant equation 

to zero and then solving the equation simultaneously. 
 
To spare you the mathematical schlep, the least squares estimates of the two 
parameters are 
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The estimate of 1̂  is a touch unwieldly, so a little mathematics provides us with the 
computationally simpler and more intuitive solution of  
 

XX

XY

SS

SS
1̂  which the ratio of the deviations between the x’s and y’s and the x’s (a 

statistical “run over rise” that you learnt in high school for the slope) 
 

where    yxnyxyyxxSS ii

n

i
iiXY  

1

 

and   22

1

2 xnxxxSS i

n

i
iXX  



 . Note that SSYY is found in a similar fashion 

such that 22 ynySS iYY   . 
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The intercept is calculated from the slope and the average x and y values.  



 3

 
We know that the regression line will pass through the average of both the dependent 
(y) and independent data because the best fit is the average y at the average x.  

Therefore If we know the slope then 
0

ˆ
ˆ 0

1 



x

y 
 such that 01

ˆˆ   yx  and 

xy 10
ˆˆ   . 

 

 

 

Model variance 

 
The deviations (or technically residuals) between observed and predicted y’s are 
centred around zero with a regression model variance of 2

s calculated as 
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n

SSE
s  

 
 

Partitioning the different sources of error 

 
An with ANOVA, which is in fact a form of linear regression as are other multivariate 
statistical methods such as Principle Component Analysis and Discriminant Function 
Analysis, we need to partition our sums-of-squares such that we can make inferential 
statements about the linear model. 
 
The total error in the model can be divided into two components; error associated with 
the regression, and error associated with the sampling error.  
 
Therefore as 
 

SSREGSSESST   
 
then we can calculate that 
 

           


222
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2 ˆˆˆˆ iiiiiiii

n

i
ii yyyyyyyyyySST  

 
 
 

Determining the model’s goodness-of-fit 
 
Questions arise as to how much variance does our linear model describe.  If our model 
described absolutely nothing because the data looked like the scatter from a shotgun 
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blast then our goodness-of-fit criterion, also known as the Coefficient of 
Determination, would be 0%.  If on the other hand, all our data fitted the linear model 
exactly then the model would have described 100% or 1. 
 

The ratio 
SST

SSE
holds the key.  If SSE is the same as the SST then the data are random 

and the ratio would be 1.  Alternatively, if the data fitted the model exactly then the 
ratio would be 0 (because SSE = 0).   
 
 

Therefore, 10,1 22  R
SST

SSREG

SST

SSE
R  

 
 

 

Parameter correlation 
 
The Correlation Coefficient, r , is used to determine the degree of correlation between 
parameters (not variables x and y).  For an increase of one unit of 0  we can expect to 

get an r increase in parameter 1  and visa versa. 
 
 

11, 


 r
SSSS

SS
r

YYXX

XY  

 
 
 
  
 
Inference about 0  and 1  

 
The parameters 0 and 1 are unknown and have been replaced by their least squares 

estimates 0̂ and 1̂ . 

 
 
We can therefore construct  %1  confidence intervals around the parameters using 
the same method used in constructing confidence intervals of  using the t-
distribution.   
 
For the slope parameter as 
 

XXn SSst /ˆ
2,2/11    
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and for the intercept parameter as 

XX

i
n SSn
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
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2,2/00
ˆ

  

 
Note that the standard error of the parameter estimates have n - 2 degrees of freedom.  

This is because we have estimated two parameters - 0̂ and 1̂ . For example, in the 

case of a more complicated model with 5 parameters then there would be n – 5 
degrees of freedom.   
 
 
Hypotheses about 0  and 1  

 
Hypotheses can be made about parameters. Examples include: “Is the slope different 
from zero?” or “Is there a one-to-one relationship between the observed and predicted 
data (in effect is the slope equal to 1)?”  
 
The same methods employed in the one-sample t-tests apply. 
 
The test statistics are simply 
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 for the slope parameter, and 
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For example, under 0: 10 H  then 
XXSSs

T
/
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1

1
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 
  

 
 

Presenting results 
 
As mentioned earlier, ANOVA is a type of linear regression.  Therefore, results from 
a linear regression with n data points and p parameters is summarised in ANOVA 
form for its ease of interpretation as: 
 
 

 SS df MSE F 
Regression SSREG 1p  

REGdf

SSREG

ERROR

REG

MSE

MSE

Error SSE pn   

ERRORdf

SSE
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Total SST    
 
 
The overall significance of the regression is summarised by the F test-statistic, which 
is F-distributed with p - 1 numerator and n - p denominator degrees of freedom. If the 
statistic is greater than the specified critical F-value then we can reject the null 
hypothesis that there is no linear relationship between the x and y data.  
 
 
Hypothesis tests are also summarised in table form as follows, where the T test-
statistic is t-distributed with n – 2 degrees of freedom as follows: 
 

Parameter Estimate SE T 

0  
0̂  

XX

i

SSn

x
s


  2


0

00
ˆ




SE


 

1  
1̂  XXSSs /  

1

11
ˆ




SE


 

 
 
An example:   
 
You are given the data from a daily growth ring validation study. In this study, you 
used a fluorochrome marker, such as the antibiotic oxytetracycline, to deposit a 
fluorescent band into the otolith of each fish at the date of marking.  The fish were 
then released before being recaptured later and sacrificed.  The otoliths of each fish 
were removed and the number of growth microincrements counted from the 
fluorescent band to the edge of the growing margin of the otolith.  The number of 
days at liberty as therefore assumed known without error. 
 

 
Time at liberty 

Number of  
increments 

5 6 
5 5 

10 9 
10 11 
10 11 
15 14 
15 18 
15 15 
20 22 
20 20 

 
 

1. Is there a significant relationship between the number of daily growth rings 
and the time of fish at liberty at the 5% level of significance? 

2. How much variance is explained by the regression? 
3. What is the confidence interval of the slope at the 5% level of significance? 
4. Is the slope equal to 1 – i.e., one growth increment is equivalent to one day at 

the 5% level of significance? 
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The first step in the analysis process is to plot the data.  Here it is below and the 
relationship appears to be linear.  We then proceed further. 
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We now wish to estimate the slope and the intercept where.  
 
As 5.2721.135.12101910   yxnyxSS iiXY   

and 5.2625.12101825 222   xnxSS iXX   then 

 
Then the parameter estimates are 
 

04.1
5.262

5.272ˆ
1 

XX

XY

SS

SS
  and  12.05.1204.11.1310  xy   

 
This can be plotted as 
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The next step is answer the first question pertaining to the overall significance of the 
model.  We then calculate SSREG and SSE to fill in the ANOVA table under the null 
hypothesis that there is no relationship – or simply the variance of the regression is 
the same as the variance of the error.  
 
The hypothesis is rejected if the ANOVA table F test-statistic is greater than the 
critical F statistic of 31.58,1,05.0 F . 

 
 SS df MSE F 

Regression 283.92 1 283.92 161.96
Error 14.02 8 1.75  
Total 296.94    

 
 
As our test statistic is larger, we can reject the null hypothesis and conclude that there 
is a linear relationship between the days at liberty and the number of growth rings on 
the otoliths. 
 
 
The second part of the question requires us to calculate the Coefficient of 
Determination, the 2R . 
 

Therefore, as 96.0
94.296

92.2832 R , we can conclude that the linear regression model 

explained 96% of the total data variance. 
 
 
 

The next two parts of the question pertain to inference about the slope parameter, 1̂ , 
using either a confidence interval approach or a hypothesis testing approach. 
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The confidence interval of the slope is calculated from XXn SSst /ˆ
2,2/11   . 

 

As 32.1
210

02.14

2
2 







n

SSE
s  and 306.28,025.0 t from the inverse t-tables then 

 

5.262/32.1306.204.11  or 23.185.0 1    
 
The 95% confidence interval includes the value of 1 and points us towards noting that 
there is indeed a 1-to-1 relationship between days at liberty and increment counts 
 
The third question is a hypothesis test, with the null hypothesis stating 1: 10 H . 

 
Using 05.0  then we would reject the null hypothesis if of T test-statistic was 
greater than 306.28,025.0 t . 

 

The test-statistic is calculated as 49.0
5.262/32.1

104.1

/

ˆ
11

1 






XXSSs

T



. 

 
As this value is less than the critical t-statistic we fail to reject the null hypothesis and 
conclude that there is a 1-to-1 relationship between days at liberty and the number of 
growth increments deposited on the otoliths. 
 
 
 
 
 
 
 
 
 
 
 
 
 


