bet36体育投注_bet36体育在线—激情赢盈中√

图片
Rhodes>Biotech>Research> BioSENS Research Group

Prof Janice LIMSON- BioSENS Research Group

Leader of the BioSENs Biotechnology Research Group (Sensors, Energy and Nanomaterials Research Group)

Our research group is currently engaged in three core research areas:

? Biosensors ? Biofuel Cells ? Nanobiotechnology

This research is aimed at realizing innovative and commercialisable solutions in development of sensors and in accessing alternative energy from waste products. Taking an applied electrochemistry approach, much of the research seeks to harness the potential of nanostructured materials in realizing these goals.

Summary of research

Development of specific and sensitive sensing technology for:
  • early disease detection by monitoring markers of disease in human blood
  • the design of novel biorecognition agents  (aptamers) for HIV and malaria
  • the study of nanomaterials for drug delivery in theranostic applications
Study of biofuel cell technology
  • as a source of “green” alternative energy
  • for remediation of wastewater coupled to power generation in microbial fuels
  • coupled to sensors, environmental monitoring of eg phenolics

Last Modified: Mon, 28 Oct 2019 13:56:15 SAST

Rhodes>Biotech>Research> BioSENS Research Group

Dr Aileen Boshoff -Malaria and Trypanosomal parasites

Dr Aileen Boshoff’s research focuses on studying fundamental aspects of  molecular chaperones of parasitic origin with the aim of understanding the differences between parasitic and human systems.  Through the use of modern biotechnological techniques, the role of parasitic molecular chaperones in the establishment and survival of the malarial and trypanosomal parasites

within the human host will be elucidated. The knowledge gained will be used to enhance our comprehension of this important class of proteins and improve our understanding of

the biology of these two parasites. This may contribute to the development of novel drug targets for the treatment of malaria and African Trypanosomiasis.  Another broad objective is the application of molecular chaperones in protein biotechnology.  The overexpression of molecular chaperones can enhance expression and solubility of recombinant proteins.

Staff/Research Associates

Professor & Head of Biotechnology

JL Limson, PhD, PGDHE(Rhodes)

Senior Lecturer: Biotechnology

A Boshoff, PhD(Rhodes)

Lecturer: Biotechnology

E Prinsloo, PhD(NMMU)

Research Associates
  • JE Burgess, PhD(Cranfield)
  • G Cambray, PhD(Rhodes)
  • NS Gardiner, PhD(Rhodes)
  • J Jordaan, PhD(Rhodes)

Emeritus Professor - PD Rose, BSc(Hons)(UCT), PhD(Rhodes)

Professional Associate - P Allison, BSc(Hons)(KZN)

Last Modified: Mon, 28 Oct 2019 13:57:13 SAST